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Introduction
High-tension glaucoma can be defined as a disease where the 

progressive loss of ganglion cells of the retina and of the subcortical 
and cortical centres of the brain, and their axons, manifests itself by 
changes in the visual field and by the atrophy of the optic nerve disc 
with excavation. 

It has been known since 1883 that, in addition to changes in the 
visual field, the colour vision defects occur as well [1]. This has been 
confirmed by more recent studies that specify colour vision defects in 
high-tension glaucoma into the yellow/blue area of the spectrum [2-5]. 
Colour vision defect progressed with the progressing glaucoma disease 
[5,7-9]. 

Based on our previous study “Changes in the Visual Cortex in 
Patients with High-Tension Glaucoma” [10], we tried to determine if 
there is a difference between black/white and yellow/blue stimulations 
in fMRI examination in the advanced stages of glaucoma disease.

Group of Patients and Methods
Eight patients with different stages of high-tension glaucoma 

were enrolled in the group (3 females aged 41 - 65 and 5 males aged 
40 - 73 years). This group was compared with a group of eight healthy 
individuals (2 females aged 23 and 55 and 6 males aged 23 - 65 years).

The mean IOP in glaucoma patients, treated with an antiglaucoma 
topical local treatment was 14 (SD=2.2) mmHg. In the control group 
the value was 14 (SD=2.4) mmHg. 

A comprehensive ophthalmological examination was supplemented 

with the visual field using the glaucoma program in the fast threshold 
program mode which served to determine the stage of the glaucoma 
disease and was described in the previous study [10]. Pattern defect 
(PD) is shown in table 1. 

All measurements of the functional MR imaging (fMRI) were 
performed using the Philips Achieva system with a magnetic field of 3T. 
Measurements were performed using the standard 8-channel RF head 
sense coil. For the optical stimulation, the ESys (InVivo) commercial 
stimulation system was used.

BOLD fMRI was measured using a gradient-echo EPI sequence 
with the following parameters: TE=30 ms, TR=3 s, flip angle of 90°. The 
measured volume consisted of 39 contiguous slices with thickness of 2 
mm and the size of the measured voxel (spatial resolution) was 2 ×2 × 2 
mm (FOV=208 × 208 mm, matrix 104 x 104, reconstruction matrix 128 
× 128, SENSE factor of 1.8). Two fMRI measurements were performed 
for each examination with different types of optical stimulation: In 
the active phase of the first measurement, the subjects were exposed 
to alternations of black/white (BW) checkboard pattern (Figure 1a); 
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while yellow/blue (YB) checkerboard pattern alternations were used 
in the second measurement (Figure 1b). This alternation was in the 
form of colour inversion at a frequency of 2 Hz. During the resting 
phase, the subjects were shown a static cross hair placed in the middle 
of the visual field. Each measurement consisted of a sequence with five 
30-second periods of active phase (10 dynamic scans) and five resting 
periods of the same length. Therefore, each measurement consisted of 
100 dynamic scans and lasted 5 minutes. 

The fMRI evaluation was performed in SPM8 software. During 
the pre-process, the data were corrected for motion (realignment) 
and time shift of the slices (slice timing) followed by smoothing using 
Gaussian filter with FWHM of 6 × 6 × 6 mm and finally normalized 
into the MNI_152 space. A general linear model with canonical HRF 
(hemodynamic response function) applied to the stimulation periods 
was used for statistical evaluation of all subjects. Individual statistical 
maps were thresholded at the level of p=0.05 with FWE correction and 
the minimum cluster size of 10 voxels. The statistical maps of BW>YB 
and YB>BW differences were thresholded at the level of p=0.001, 
without correction, and the minimum cluster size of 10 voxels. 

Group statistics were performed using the paired and unpaired 
t-test with an uncorrected threshold at p=0.005 and the minimum 
number of uninterrupted voxels of 60 (8 subjects in each group). 

Results
The resulting activations during the optical stimulation for each 

subject are presented in table 1. The values shown in the table represent 
the number of activated voxels in the parietal gyrus during the 
stimulation by black/white (BW) and yellow/blue (YB) checkerboard 
patterns. 

The average number of activated voxels during BW stimulation 
was 6 563 (SD=3 037) in glaucoma patient group and 7 462 (SD=4 515) 
in the control group; the extent of activation did not differ statistically. 
When activated by YB checkerboard, the activation range decreased on 
average to 4 282 (SD=3 510) in the patient group and to 6 353 (SD=2 
148) in the healthy controls.

It can be seen from the table that the difference in the magnitude 
of activation of the visual cortex during the BW and YB stimulation 
is markedly higher in the patients with high-tension glaucoma than 
it is in the healthy controls. The mean value of the difference in the 
number of activated voxels using the BW vs. YB stimulation is 59% 
for the patients while for the controls it is only 2%. Statistical maps 
of BW>YB and BW<YB differences for the patients and controls were 
thresholded at an uncorrected threshold of p=0.001 and the numbers 
of voxels were statistically compared using t-test. While the BW>YB 
difference between the control group and the patients differed by the 
statistically significant 1606 voxels (p=0.039), no difference was found 
for BW<YB (p=0.18).

Subject BW YB BW>YB YB>BW 
2(BW-YB) 2(YB-BW)

PD
(BW+YB) (BW+YB)

Patient 1 7400 5900 720 97 11% 1% 4.91/2.71
Patient 2 3700 3500 52 52 1% 1% 2.35/ ∞
Patient 3 4400 1100 5200 300 189% 11% 2.19/12.85
Patient 4 12100 10900 620 400 5% 3% 11.55/1.61
Patient 5 8500 3600 2640 0 44% 0% 10.59/18.16
Patient 6 3800 60 4080 386 211% 10% 17.76/2.8
Patient 7 8400 6900 550 0 7% 0% 2.73/2.24
Patient 8 4200 2300 0 0 0% 0% 13.26/3.56
Control 1 3800 3200 0 0 0% 0% 0
Control 2 8300 6600 39 0 1% 0% 0
Control 3 3900 5800 170 110 4% 2% 0
Control 4 17700 10600 550 0 4% 0% 0
Control 5 6900 6900 12 35 0% 1% 0
Control 6 7750 4550 46 0 1% 0% 0
Control 7 7150 6980 8 39 0% 1% 0
Control 8 4200 6200 190 580 4% 11% 0

Table 1: Table shows the range of activations represented by the number of statistically significant voxels during stimulation by the black/white (BW) and yellow/blue (YB) 
checkered patterns. The next two columns show the statistically significant differences between BW and YB stimulations, again expressed by the number of voxels (with 
tested hypothesis being BW >YB, YB >BW resp). The last two columns show the percentage difference in the number of activated voxels of the statistical difference.

Figure 1: Shows the stimulation by black/white (BW) checkered pattern (a) and yellow/blue (YB) checkered pattern (b) During the stimulation, the checkered pattern 
was alternated with its inversion at a frequency of 2 Hz.
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The maps of significant differences between the BW and YB 
stimulations were reconstructed using a paired t-test. The results are 
presented in figure 2. In the controls the difference in activation is only 
in a narrow region around the medial centre of the occipital gyrus 
(coordinates in MNI (2,-80,-6)). In the patients this region is enlarged 
and, in addition, there is a region of significant difference on the lateral 
surface of the medial occipital gyrus to the left (-44, -72.2) (Figures 2a 
and 2b). On the other hand, and only in volunteers, a slightly higher 
activation during YB stimulation was seen bilaterally in the temporal 
gyri (Figures 2c and 2d). 

This effect is further supported by the map of the statistical 
difference between both groups by an unpaired t-test (Figure 3). It 
shows that particularly the lateral regions of the visual cortex are 
significantly less activated in patients as compared to controls.

An example of an extreme difference in a patient (patient No. 6) is 
shown in figure 4. Male, 39 years, VA: 0.3, or 1.0 with correction (-2.0 = 
-2.5 ax.120  or  -1.0 ax.20), IOP 17/13 mmHg (combigan, travatan), c/d 
= 1.0 or 0.8, visual field pattern defect = 17.76 or 2.8, NFI GDx = 73 or 
29. Out of the whole group, this patient exhibited the lowest activation 
by YB stimulation.

Discussion
In experimentally induced high-tension glaucoma, the pathology 

is known to involve the magno-, parvo- and koniocellular pathways 
[11]. It is unlikely that the glaucoma disease spares any of the cells 
comprising these pathways. It is the ganglion cells, which are the last in 
the retina to encode the colour signal. 

It is not necessary to discuss here the physiology of colour stimuli 

a b

c d

Figure 2: Shows regions which are activated more significantly during the BW stimulation (top - a, b) and inversely, during the YB stimulation (bottom - c, d). The left 
column represents results in the controls (a, c) and the right column shows the patients (b, c).
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Figure 3: Shows regions with statistically more significant activation by YB stimulation in controls versus patients.

http://dx.doi.org/10.4172/2155-9570.1000252


Citation: Saifrtová A, Lešták J, Tintěra J, Svatá Z, Ettler L, et al. (2012) Colour Vision Defect in Patients with High-Tension Glaucoma. J Clin Exp 
Ophthalmol 3:252. doi:10.4172/2155-9570.1000252

Page 4 of 5

Volume 3 • Issue 9 • 1000252
J Clin Exp Ophthalmol
ISSN:2155-9570 JCEO an open access journal

10

5

6

4

2
a

a

b
Figure 4: Patient (No. 6) with the highest difference in the activation range between the BW stimulation (left, a) and YB stimulation (right, b).

processing, from the photoreceptors up to the visual cortex. It is 
the presence of the pathology in high-tension glaucoma that is of 
importance. 

Therefore, the colour vision defect can be explained by damage or 
loss of ganglion cells involved in the processing of colour stimuli. The 
contribution of the L, M and S retinal cones in colour vision defects in 
high-tension glaucoma remains unclear. The fact that in high-tension 
glaucoma there may be impairment also at the cone level was shown by 
Nork [6] who demonstrated an oedema of L/M cones in experimental 
animals similar to what he observed in human glaucoma retinas. 
However, the author did not observe any loss of cones. In experimental 
high-tension glaucoma in monkeys, Greenstein et al. [12] proved that it 
is primarily the S pathways that are damaged during the early glaucoma 
changes. The L and M pathways are involved in the process during the 
more advanced stages of the disease. 

We used a yellow/blue checkered pattern to stimulate the colour 
stimuli processing channels and compared the BOLD results with the 
black/white structured stimulation (Figure 1).

Blue and yellow colours were chosen intentionally as they include 
all three opposing colours (red/green the mixing of which results in 
yellow and yellow-blue). Our results show that the glaucoma process 
damages the visual cortex more than it is with the black/white pattern 
stimulation. 

There are not many studies dealing with functional magnetic 
resonance in glaucoma [13,14]. In both studies, the authors showed 
changes in the visual cortex region in human glaucoma.

In our previous study [10] dealing with patients with various 
changes in the visual field, we demonstrated not only the damage to 

the central nervous system (CNS) in glaucoma but also a correlation 
between the progression of functional changes in the visual cortex and 
changes in the visual fields. 

It must be emphasised that the measurement of the neuron activity 
changes using fMRI is not a direct evidence of glaucoma-linked 
neurodegeneration in CGL or V1. Functional changes in neuron 
activity in a neuronal disease can be independent of the structural 
changes of neurons/ axons in the CNS and vice versa. For example, the 
current fMRI studies have found that neuronal activity in the cortical 
representation of the fovea centralis persists despite a clear macular 
retinal pathology with a loss of foveal vision [15,16]. 

Nevertheless, we believe that, specifically in the high-tension 
glaucoma, changes in BOLD activity are an evidence of decreased 
utilisation of oxygen by the reduced number of surviving ganglion 
cells of the cerebral visual cortex. This assumption is also supported by 
structural studies by other authors. 

Gupta et al. [17] provided a detailed in-depth description of 
glaucoma pathophysiology along the afferent chain of anatomical 
changes, from the eye to the superficial layers of the primary visual 
cortex. Their clinical-pathology case of advanced human glaucoma 
with loss in the visual fields demonstrated the presence of central neural 
degeneration at multiple levels of the visual system. Neuropathology in 
the visual nerves, in the posterior lateral part of CGL and in the visual 
cortex below calcarine sulcus correlated with the clinical finding as 
well. 

Similar results were also reported by Boucard et al. [18], who 
examined 8 patients with glaucoma and compared the results with 
12 healthy individuals of similar age. They acquired high-resolution 
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anatomical images of the visual cortex by means of magnetic resonance. 
Comparison of the grey matter between patients and controls revealed 
reduction in the density of the visual cortex to which connections 
entered from retinal lesions. The authors concluded that long-term 
cortical deprivation resulting from acquired retinal lesions later in life 
is associated with retinotopic-specific neuronal degeneration of the 
visual cortex.

Conclusion
The authors showed that progression of the glaucoma disease is 

accompanied with functional changes in the visual cortex. Surprisingly, 
the colour (yellow/blue) stimulation used for fMRI examination 
revealed far more pronounced changes in the activation of the cortex 
than the black/white stimulation.
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